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Bound state properties of the ground states in the DT¿ and T2
¿ ions
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Recently developed multibox approach@A.M. Frolov, Phys. Rev. E64, 036704~2001!# is used to construct
highly accurate, bound state wave functions for the ground states in the heavy adiabatic ions DT1 and T2

1 . The
computed variational energies and bound state properties have significantly higher accuracy than results known
from earlier computations. Nevertheless, the computed and predicted nucleus-nucleus cusp and nucleus-
nucleusd function differ significantly even for the highly accurate wave functions used in this study.

DOI: 10.1103/PhysRevE.65.046705 PACS number~s!: 02.70.2c, 31.25.Eb, 32.10.2f
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In this paper we report highly accurate results for t
ground states in the heavy adiabatic ions DT1 and T2

1 .
These ions are of great interest in various applications
are mainly related with the nuclear~d,t! fusion andb2 decay
of tritium nuclei. Computation of the corresponding fin
state probabilities requires the knowledge of the initial bou
state wave functions. Presently, to determine the bound s
spectra in these systems we apply the exponential variati
expansion in the relative coordinates combined with our
cently developed multibox approach for choosing the non
ear parameters@1#. Note that this approach does not use a
of the Born-Oppenheimer~or adiabatic! approximations@2#.
In general, all nonadiabatic methods are not very succes
for performing highly accurate, bound state calculations
the heavy adiabatic ions, such as DT1 and T2

1 . In particular,
the observed convergence rate and numerical stability of
computed results are significantly lower for heavy adiaba
ions, than for light adiabatic ions, e.g., for the H2

1 and HD1

ions. A closely related problem is to explain the observ
huge differences between computed and expected nuc
nuclear contact properties@3# in the heavy adiabatic ions. Fo
instance, it was found in Ref.@4# that the computed and
actual values for the tritium-tritiumd function in the T2

1 ion
differ from each other by'33 orders of magnitude. Analo
gous deviations were also detected for the nuclear-nuc
cusp and three-particled function. In fact, for the heavy
adiabatic ions such deviations are maximal. Note that
other bound state properties in the adiabatic three-body
can be determined to a high accuracy. Such properties
clude energies, all electron-nuclear expectation values,
many nuclear-nuclear expectation values. But the presenc
unexplained and very large differences between the c
puted and actual nuclear-nuclear contact properties@3# de-
valuates our approach@5# developed originally for the adia
batic ions.

Unfortunately, at the present time we cannot explain w
the exponential variational expansion produces such poo
sults for the contact nuclear-nuclear properties in the a
batic systems. In fact, this question requires a further inv
tigation. But, in this study we provide some arguments t
can be useful for choosing the correct explanation. Indee
is shown below that by increasing the accuracy of trial wa
functions one can drastically improve the observed ag
ment between the computed and predicted contact nucl
1063-651X/2002/65~4!/046705~7!/$20.00 65 0467
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nucleus properties. This indicates clearly that currently
served deviations for the contact properties are
fundamental and can be eliminated completely by devel
ing the next generation of more effective and better conv
gent variational methods.

Presently, we want to improve significantly the over
accuracy of the variational wave functions used for bou
state calculations of the adiabatic ions. This means that s
wave functions must provide highly accurate results not o
for the bound state energies, but also for other bound s
properties in the heavy adiabatic ions DT1 and T2

1 . In fact,
it is shown below that the main troubles for these ions
related with the contact nuclear-nuclear properties, rat
than with the highly accurate energy determination. Note t
the considered DT1 and T2

1 ions are the Coulomb three
body systems with unit charges. The nonrelativistic Ham
tonian for an arbitrary Coulomb three-body system can
written in the following form:

H52
1

2m1
¹1

22
1

2m2
¹2

22
1

2m3
¹3

21
q3q2

r 32
1

q3q1

r 31
1

q2q1

r 21
,

~1!

where atomic units (\51,e51 andme51) are used. In this
equationq1 ,q2 ,q3 are the particle charges, whilem1 ,m2 ,m3
are their masses. In fact, in all formulas below the subscr
1 and 2 represent the two heavy nuclei, while the subscri
corresponds to the electron~light particle!. Furthermore, in
this study only atomic units are used. In atomic units for t
considered adiabatic ions we haveq15q2511, q35e25
21, m35me51 and min(m1,m2)@m351. Presently, for the
nuclei of hydrogen isotopes the following massesmd
53670.483014me andmt55496.92158me are used@6#.

Our main computational goal in this study is to determi
~to a high accuracy! the bound states of the correspondi
Schrödinger equation (H2E)C50, whereH is the Hamil-
tonian from Eq.~1! andE(E,0) is its eigenvalue. The de
termined wave functions are used to perform highly accur
computations of various bound state properties. Presentl
determine the bound state energies and corresponding w
functions we apply an improved version of the exponen
variational expansion@1#. The general form of such an ex
pansion is discussed in Ref.@1#. Below, however, we restric
ourselves to the study of the groundS(L50) states in the
©2002 The American Physical Society05-1
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ALEXEI M. FROLOV PHYSICAL REVIEW E 65 046705
DT1 and T2
1 ions. For these states the exponential var

tional expansion can be written in the form

C5
1

2
~11k P̂21!(

i 51

N

Ci exp~2a iu12b iu22g iu3!

3exp~ ıd iu11ıeiu21ı f iu3!, ~2!

where u1 ,u2, and u3 are the truly independent perimetr
coordinates (0<ui,1`). These three coordinates are sim
ply related to the three relative~or interparticle! coordinates
r i j 5urW i2rW j u:

ui5
1

2
~r ik1r i j 2r jk!,

where r i j 5r j i and iÞ j Þk5(1,2,3) @1#. In Eq. ~2! the op-
erator P̂21 is the permutation of the two identical~1 and 2!
particles in the symmetric systems, wherek561, otherwise
k50 ~e.g., for the DT1 ion!. In fact, for the ground state
of the T2

1 ion k511. Also, in Eq. ~2! ı is the imaginary
unit, Ci are the linear ~variational! parameters, and
a i ,b i ,g i ,d i ,ei , and f i are the 6N nonlinear parameters (i
51, . . . ,N) and N is the total number of basis function
used in calculations. The simple conditionsa i.0,b i.0, and
g i.0 ~for i 51, . . . ,N) must be obeyed to guarantee t
convergence of all integrals needed in computations. In
tual computations the central part of the solution is
optimal choice of these 6N nonlinear parameter
a i ,b i ,g i ,d i ,ei , andf i ( i 51, . . . ,N) in the trial wave func-
tions in Eq. ~2!. Recently, we proposed~see, e.g., Ref.@1#
and references therein! a few different strategies for optimi
zation of these nonlinear parameters. In particular, in
study, we apply our multibox strategy, which was develop
in Ref. @1# and effectively used for highly accurate calcul
tions in various three-body systems.

The basic ideology of the multibox approach is describ
in detail in Ref.@1#. This work also contains a brief history o
its invention. Presently, we do not want to repeat all ar
ments used in Ref.@1# to explain numerous advantages of t
multibox approach. Note only, that this approach has b
developed to perform high precision, variational, bound s
calculations for arbitrary three-body systems. In this a
proach the nonlinear parametersa i ,b i ,g i ,d i ,ei , and
f i ( i 51,2, . . . ,N) in Eq. ~2! are chosen quasirandom
from a few ~up to 10! different six-dimensional boxe
B1 ,B2 , . . . ,B10. Since these 6N parameters
@a i ,b i ,g i ,d i ,ei , and f i ( i 51,2, . . . ,N)# are not varied in
the procedure, they are not real nonlinear parameters
the method. These parameters are usually called eithe
lattice points, or quadrature points. In contrast w
a i ,b i ,g i ,d i ,ei , and f i ( i 51,2, . . . ,N), the geometrical
sizes and positions of the mentioned six-dimensional bo
B1 ,B2 , . . . ,B10 are optimized, i.e., they are the actual no
linear parameters of the method. Furthermore, there are
a few scaling parameters, which are optimized for each s
04670
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~or each pass! of the procedure. These parameters are use
find a proper balance between different parts of the t
function @1#.

Let us present the following simplified version of the pr
cedure. The simplification means the use of the three-
version and restriction to the four scaling parameters. T
means that only three six-dimensional boxesB1 ,B2 andB3
are used in our present calculations. The choice of the n
linear parameters in Eq.~2! proceeds as follows. Leti be the
number ~or index! of the basis function in Eq.~2! (1< i
<N) and k5mod(i ,3)11, where mod(i ,3) designates the
modular division~i.e., an integer remainder after division o
i by 3!. Now, the parametersa i ,b i ,g i ,d i ,ei , and f i
are chosen quasirandomly from the six interva
@A1

(k) ,A2
(k)#,@B1

(k) ,B2
(k)#,@G1

(k) ,G2
(k)#,@D1

(k) ,D2
(k)#,@E1

(k) ,E2
(k)#,

and @F1
(k) ,F2

(k)#:

a i5 K K 1

2
i ~ i 11!A2L L ~A2

(k)2A1
(k)!1A1

(k) , ~3!

b i5 K K 1

2
i ~ i 11!A3L L ~B2

(k)2B1
(k)!1B1

(k) , ~4!

g i5 K K 1

2
i ~ i 11!A5L L ~G2

(k)2G1
(k)!1G1

(k) , ~5!

d i5 K K 1

2
i ~ i 11!A7L L ~D2

(k)2D1
(k)!1D1

(k) , ~6!

ei5 K K 1

2
i ~ i 11!A11L L ~E2

(k)2E1
(k)!1E1

(k) , ~7!

f i5 K K 1

2
i ~ i 11!A13L L ~F2

(k)2F1
(k)!1F1

(k) , ~8!

wherek51,2,3 and the symbolŠ^•••&‹ designates the frac
tional part of a real number. As we mentioned above,
boundaries of six mentioned intervals, i.e
A1

(k) ,A2
(k) , . . . ,F1

(k) ,F2
(k) are the actual nonlinear paramete

of the method. The total number of actual nonlinear para
eters used in this stage of the procedure equals 36 (236
33 for the considered three-box version!. In fact, such a
choice of thea i ,b i ,g i ,d i ,ei , and f i parameters in Eq.~2!
represents the first~or main! stage of the procedure. Fo
many Coulomb three-body adiabatic systems one pass o
first stage already produces very accurate results.

The second stage is essentially a scaling of the lat
points chosen in the first step. The scaling itself is perform
as follows. The families of the parametersa i ,b i ,g i ,d i ,ei ,
and f i ~which correspond to the samek) are multiplied by
the positive factorlk (k51,2,3). Then, this parameterlk is
also varied. The total number of such additional parame
equals 3 (331). Also, one additional variational paramet
is used to perform a scaling for all lattice points in Eq.~2!.
Finally, this method produces a properly balanced wa
function that represents the considered bound state very
curately. Note that the total number of actual nonlinear
rameters in this version of the procedure equals 40.
5-2
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BOUND STATE PROPERTIES OF THE GROUND STATES . . . PHYSICAL REVIEW E 65 046705
In fact, we can say that six intervals~which corres-
pond to the samek) @A1

(k) ,A2
(k)#,@B1

(k) ,B2
(k)#,@G1

(k) ,G2
(k)#,

@D1
(k) ,D2

(k)#,@E1
(k) ,E2

(k)#, and @F1
(k) ,F2

(k)# form one six-
dimensional box~or parallelotop! Bk . The first three such
intervals must always be positive, while the last three can
arbitrary. Note also that, the high efficiency of our pres
strategy for choosing the lattice points in Eq.~2! is based on
the fact that in Eqs.~3!–~8! any additional condition for the
A1

(k) ,A2
(k) , . . . ,F2

(k) points is not used. In particular, eithe
A1

(k)<A2
(k) , or A1

(k)>A2
(k) . The same is true for the

B1
(k) ,B2

(k) , . . . ,F1
(k) ,F2

(k) points. Furthermore, for anyk the
relative position of the interval@A1

(k) ,A2
(k)# with respect

to the intervals @A1
(k21) ,A2

(k21)# and @A1
(k11) ,A2

(k11)#
can be arbitrary. This is also true for th
@B1

(k) ,B2
(k)#, . . . ,@F1

(k) ,F2
(k)# intervals. The results of calcu

lations for different systems indicate clearly that such a fr
dom in choosing the lattice points is one of the main adv
tages of our present approach. In fact, this allows
generation of extremely accurate variational wave functi
for different systems~see results below!.

Our present procedure can be modified easily to the c
when the original variational expansion@e.g., Eq.~2!# in-
cludes some cluster~or booster! functions. Such functions
are often used in calculations to accelerate convergenc
the whole method. For instance, if one booster function
used, then the indexi in Eqs.~3!–~8! changes fromN011 to
N. HereN0 is the number of basis functions in the boos
functions, whileN is the total number of basis function
used. The cases when three-, four-, and many-cluster f
tions are included in calculations can be considered in an
gous manner. In any case, our presently developed mult
approach produces a variationally optimal, orthogo
complement to the original cluster wave function. In oth
words, by using our present procedure one can obtain
best~in the variational sense! correction to the short-term~or
cluster! wave function known from separate computations

The variational energies obtained with the use of ex
nential expansion Eq.~2! can be found in Table I. To perform
our present calculations for the T2

1 ion we used the booste

TABLE I. The convergence of the total energies in atomic un
for the ground states in the T2

1 and DT1 ions.

N a T2
1 DT1

400 20.599 506 910 077 21 20.599 130 660 648 8
500 20.599 506 910 108 40 20.599 130 662 613 5
600 20.599 506 910 111 33 20.599 130 662 806 9
1400b 20.599 506 910 111 54 20.599 130 662 855 0
1600b 20.599 506 910 111 54 20.599 130 662 855 0

`c 20.599 506 910 111 54 20.599 130 662 855 0

20.599 506 909 80d 20.599 130 661 5d

aThe number of basis functions used in calculations.
bFor this case the nonlinear parameters were not optimized.
cThe asymptotic value (N5`) of energy determined by using th
formula E(Ni)5E(`)1A/Ni

g .
dThe best results determined in previous calculations@4,10#.
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wave function that contains 200 exponential basis functio
This booster wave function have been determined in
series of separate computations for the H2

1 ion (mp
51836.152701me). The corresponding variational energ
for the H2

1 ion is 20.5971390630234 a.u.@N5200 in Eq.
~2!#. This is the most compact and accurate short-term w
function known for this ion. In fact, our present approach h
been tested fully for the H2

1 ion. The energy computed
with N51800 basis wave functions in Eq.~2! is
20.597 139 063 123 405 07 a.u., i.e., it is one of the b
variational results known for this system~see, e.g., Ref.@7#!.
The bound state properties for the H2

1 ion coincide very well
with the results obtained in Refs.@4,8,9#. Our results for the
light adiabatic ions will be published elsewhere. For the2

1

ion we used essentially the same approach. The variati
energies computed with theN5400–600, 1400, and1600,
and 600 basis functions can be found in Table I. The fo
nonlinear parameters of the present methods~see above!
have been varied for eachN. The observed convergence fo
the energiesE upon the number~N! of basis functions used
@i.e., E(N)# is significantly faster than in the case, whe
these nonlinear parameters are varied only for one valu
N. It can be illustrated by representing the dependenceE(N)
in a simple asymptotic formE(N)5E(`)1A/Ng, where the
positive constantg can be used as a numerical indicator
the convergence rate. From Table I one finds in this form
g'11.0. However, if the nonlinear parameters are var
only for one value ofN, then the parameterg decreases to
'7.5. Finally, the computed variational energy
20.599 506 910 111 54 a.u. for the ground state of the2

1

ion is much more accurate than our previous value@4# ~at
least fourteen decimal figures here are stable!.

For the DT1 ion the procedure was essentially the sam
but in this case the short term booster wave function has
been used. Nevertheless, the computed variational ene
for the DT1 ion also converge very fast when the number
basis functions N grows. Our best variational energ
20.599 130 662 855 0 a.u. for the ground state in the D1

ion is also most accurate computed value. Note, that alre
for N5500 functions in Eq.~2! the energy from Table I is
significantly better than the appropriate energy from R
@10#. The fact that Eq.~2! can produce the lower bound sta
energies than values determined in Ref.@10# for the DT1 ion
was quite unexpected. Indeed, the numerical value of triti
nuclear mass used in Ref.@10# is larger than ours. Moreover
as we mentioned above, the variational expansions in
relative ~or perimetric! coordinates@e.g., Eq.~2!# work sig-
nificantly better for light adiabatic ions, rather than for th
considered DT1 and T2

1 ions. On the contrary, the metho
used in Ref.@10# was specifically designed for purely adia
batic systems. Note also, that due to the very restricted c
puter resources, in this study we could not apply the m
effective four-, five-, and six-box versions of our prese
method. However, as follows from Table I, our three-b
approach is quite effective even for the heavy adiabatic i
DT1 and T2

1 .
It should be mentioned that such very fast converge

can be observed only for the bound state energies. Nume
results for other bound state properties~see below! computed
5-3
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TABLE II. The expectation values~in atomic units! of some propertieŝX& for the ground states in the T2
1

and DT1 adiabatic ions. Below, the subscript 3 designates the electron, 2 stands for the tritium nucleus
1 mean deuterium nucleus in the DT1 ion and tritium nucleus in the T2

1 ion.

^X& t1t1e2 d1t1e2 ^X& t1t1e2 d1t1e2

^r 21
22& 0.246 808 951 8 0.246 346 97 ^r 21

21& 0.494 949 541 9 0.494 269 271 7

^r 31
22& 1.435 633 793 3 1.434 312 47 ^r 31

21& 0.846 981 681 1 0.846 195 194 9

^r 32
22& 1.433 821 04 ^r 32

21& 0.846 335 402 0

^r 21& 2.035 386 031 4 2.039 939 517 9 ^r 21
2 & 4.173 214 426 2 4.195 439 299

^r 31& 1.677 707 679 3 1.680 255 516 9 ^r 31
2 & 3.485 248 902 1 3.497 361 208

^r 32& 1.680 023 341 2 ^r 32
2 & 3.496 476 880

^r 21
3 & 8.618 701 719 5 8.698 479 28 ^r 21

4 & 17.927 967 28 18.179 373

^r 31
3 & 8.414 752 010 7 8.462 810 11 ^r 31

4 & 22.885 378 11 23.070 722

^r 32
3 & 8.459 833 01 ^r 32

4 & 23.060 545

^(r 31r 32)
21& 0.614 265 774 11 0.613 216 778 ^t21& 0.255 371 804 2 0.254 827 444

^(r 31r 21)
21& 0.420 871 615 15 0.420 100 102 ^t31& 0.508 819 321 0 0.509 076 474

^(r 32r 21)
21& 0.420 161 323 ^t32& 0.508 931 835

^(r 32r 31r 21)
21& 0.307 061 035 4 0.306 471 673 ^ f & 0.068 252 611 56 0.068 208 938 1

^rW31•rW32& 1.398 641 689 1.399 199 476

^rW21•rW31& 2.086 607 213 2.098 161 733

^rW12•rW32& 2.097 277 404

^2
1
2 ¹1

2& 4.389 953 849 08 0.394 773 61 ^¹W1•¹W2& 8.181 998 028 9 7.297 674 5

^2
1
2 ¹2

2& 0.394 727 55 ^¹W1•¹W3& 0.597 909 669 0.597 797 598

^2
1
2 ¹3

2& 0.597 909 669 26 0.597 337 079 9̂ ¹W2•¹W3& 0.596 876 562

^d(rW21)& 0.4714310214 0.6151310212 2 ^T& 1.119 013 820 22 1.119 826 132 49

^d(rW31)& 0.208 151 37 0.207 880 0 ^V& 21.119 013 820 22 21.119 826 132 52

^d(rW32)& 0.207 980 0 h 1.8411310215 2.2286310212

^d(rW321)& 0.7631310214 0.3114310211 « ~eV! 22.710 196 635 59 22.7011 895 098 0

n32 20.999 827 313 n31
a 20.999 818 113 1 20.999 727 630 5

n32
a 20.999 818 113 1 n21 122.7 161.4

n31 20.999 819 631 20.999 736 577 n21
a 2748.460 790 0 2200.879 985 4

aThe expected value determined by Eq.~10!.
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for differentN oscillate around some values, but they do n
converge in a rigorous sense. In fact, in many cases the
plitudes of such oscillations are relatively small and one
easily determine the final expectation values. However,
worst situation can be found for those properties that incl
the nuclear-nucleard function ~i.e., nuclear-nuclear contac
properties!. The corresponding numerical results are d
cussed below. But it is quite clear that for adiabatic syste
even very fast convergence for the energies does not ind
a high quality of the trial wave functions. In contrast wi
this, the expectation value of the nuclear-nucleard function
can indicate, in general, the overall numerical accuracy
the wave function.

The numerical values for a number of geometrical a
dynamical properties for the T2

1 and DT1 ions ~in atomic
units! can be found in Table II. Table II also contains th
corresponding variational energies determined by using
ferent numbersN of basis functions in Eq.~2!. For most of
04670
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the properties presented in Table II only stable figures fr
calculations with the higherN are shown. For the two-
particle cusps andd functions only the best results are give
in Table II. The physical meaning for all of the expectatio
values in Table II is quite clear from the notations used~for
more details, see also, Ref.@4#!. In fact, here we have to
make only a few following remarks. In all formulas give
below and in Table II the subscripts 1 and 2 mean positiv
charged heavy nuclei (m1<m2), while the subscript 3 des
ignates the electron (m351). The notationsd32,d31,d21,
andd321 stand for the corresponding two- and three-parti
d functions, respectively. The two-body cusps are de
mined in a traditional manner@11,12#:

n i j 5
^d~r i j !~]/]r i j !&

^d~r i j !&
, ~9!
5-4
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BOUND STATE PROPERTIES OF THE GROUND STATES . . . PHYSICAL REVIEW E 65 046705
where d i j 5d(r i j ) is the appropriated function and (i j )
5(32), ~31!, and~21!. The exact value ofn i j equals@11,12#

n i j 5qiqj

mimj

mj1mj
, ~10!

whereqi andqj are the charges andmi andmj the masses o
the two (i and j ) particles.

The expectation values of the two interparticle cos
functions are determined traditionally:

t i j 5^cos~r ik3r jk!&5 K r ik•r jk

r ikr jk
L , ~11!

where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk), and

( i , j ,k)5(1,2,3)# as follows:

^ f &5 K cU u1

r 32

u2

r 31

u3

r 21
Uc L

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~12!

The value^ f & can be calculated directly or by applyingt i j .
Their coincidence indicates that theset21,t32,t31 and ^ f &
have been computed correctly. The equalities

t211t321t315114^ f & ~13!

hold for arbitrary three-body system. For the T2
1 symmetric

ion we havet325t31.
The virial factorh is determined as follows:

h5U11
^V&
2^T&

U, ~14!

where^T& and ^V& are the expectation values of the kine
and potential energy, respectively. The deviation of the fac
h from zero indicates, in principle, the quality of the wa
function used. Note, however, that this statement is not
in those cases when the virial factorh is artificially im-
proved ~for more details, see, e.g., discussion in Ref.@4#!.
Table II also contains the appropriate binding energies« that
are given in eV ~the conversion factor is 1a.u
527.211 396 1 eV@6#!. These values represent the diffe
ences between the total energiesE and corresponding disso
ciation energies for the considered T2

1 and DT1 ions. The
lowest-energy dissociation thresholds for these ions co
sponds to the reactionsT2

15T1t1 and DT15T1d1, re-
spectively. Here,T designates the neutral tritium atom, whi
t1 andd1 are the two positively charged nuclei~tritium and
deuterium, respectively!.

The properties of the T2
1 ion presented in Table II agre

quite well with the less accurate results obtained in previ
calculations@4#. Analogous properties for the DT1 ions has
never been determined. So, it is very important to note
some expectation values in Table II can be expressed a
linear combinations of other properties. Furthermore, s
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combinations can be transformed to a system of indepen
tests. For instance, for the three relative vectorsrW32,rW31, and
rW21 we have

rW322rW311rW2150W . ~15!

Therefore, the three following equalities@( i , j ,k)5(1,2,3)#:

rW ik•rW jk5
1

2
~r ik

2 1r jk
2 2r i j

2 ! ~16!

hold for an arbitrary three-body system. For the appropri
expectation values one finds

^rW ik•rW jk&5
1

2
~^r ik

2 &1^r jk
2 &2^r i j

2 &!. ~17!

Analogously, sincepW 11pW 21pW 350, then we write

pW i•pW j5
1

2
~pk

22pi
22pj

2! ~18!

and

^pW i•pW j&5
1

2
~^pk

2&2^pj
2&2^pi

2&!, ~19!

respectively @( i , j ,k)5(1,2,3)#. Moreover, since pW i

5(2ı)¹Wi , then one finds

^¹Wi•¹W j&52 K 2
1

2
¹k

2L 1 K 2
1

2
¹ i

2L 1 K 2
1

2
¹ j

2L , ~20!

where (i , j ,k)5(1,2,3). Here, the¹Wi•¹W j operator is under-
stood to act on its right. The expectation values form b
sides of this equality can be found in Table II. Moreov
for the symmetric T2

1 ion one easily finds that̂¹W1•¹W3&
5^2 1

2 ¹3
2&.0 is always positive.

Now, let us discuss the computational results for t
bound state properties presented in Table II. Consider
the DT1 ion. For this system the important point to make
that, all electron-deuterium expectation values presente
Table II coincide almost exactly with the correspondi
electron-tritium values. In other words, the differences b
tween these two groups of properties are relatively sm
Thus we arrive at the remarkable conclusion that the elec
in the adiabatic DT1 ion cannot essentially distinguish be
tween the two heavy nuclei (d1 and t1). It can be shown that
this statement is also true for an arbitrary adiabatic ion t
contains two isotopic nuclei, i.e., two nuclei that have diffe
ent masses, but the same electric charges. On the other h
analogous results for the muonic molecular ions~see, e.g.
Ref. @13#! indicate clearly that the negatively charged mu
m2 in such systems distinguishes quite well between the
different ~isotopic! nuclei. Note, however, that the muon
molecular ionspdm,ptm, and dtm are not purely adiabatic
systems. Furthermore, for the antiprotonic d1t1p2 ion, the
observed d1p2 properties differ significantly from the cor
5-5
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responding t1p2 properties@14#. Obviously, in this case al
three particle masses are comparable with each other.

Second we consider the computational results for the c
tact nuclear-nuclear properties. As we stressed above,
current accuracy which Eq.~2! can provide for the contac
nuclear-nuclear properties in the adiabatic ions is very p
and obviously not sufficient for many experimental and th
oretical problems. In general, the contact propertyX can be
written in the form

^X&5^d~r i j !F̂~xW i ,pW j !&, ~21!

whereF̂ is an arbitrary, in principle, operator that depends
the dynamical variables (xW i and pW j ) of the considered sys
tem. Thed functions and cusps introduced above are the
examples of quite simple contact operators. A large num
of more complicated contact operators arise, e.g., when
nonrelativistic wave functions are used to determine
fourth- and higher-order relativistic corrections~upon the
fine structure constanta) in few-body systems. In this case
such contact operators are also essentially singular@15#.

As follows from Table II the accuracy of our present ca
culations for the T2

1 ion is significantly higher than known
from our earlier work@4#. This conclusion follows from the
comparison of corresponding virial factorsh. Based on these
virial factors, we can say that our present bound state e
gies are'105 times more accurate than energies determi
in Ref. @4#. Note that our present nuclear-nucleard function
computed for the T2

1 ion ~see Table II! is also'105 times
more accurate than such ad function determined in Ref.@4#.
This means a better agreement between the computed
expected values for the nuclear-nucleard function. It follows
from here, that currently observed deviations for the nucle
nuclear contact properties are not fundamental and can
eliminated in the future studies, e.g., by developing m
effective and better convergent variational methods.

Note that the deuterium-tritium nuclear-nucleard function
in the DT1 ion ~as well as in the DT molecule! is of interest
for applications, since its value can be used to evaluate
nuclear fusion probability in various deuterium-tritium sy
tems. In general, the expectation value of the nuclear-nuc
d function determines the probability for the two nuclei to
very close to each other. The numerical value for suc
close nuclear-nuclear distanceR0 depends significantly on
the considered system. For instance, in atomic and molec
systemsR0,e'aa0 ~i.e., R0,e'L), wherea is the fine struc-
ture constant,a0 is the Bohr radius, andL is the Compton
wavelength ('3.861 592 642310211 cm). For muonic sys-
tems one findsR0,m'aam5L/mm'1.87310213 cm. Thus
the deuterium-tritiumd function in the DT1 ion determines
the total probability to find both nuclei at the distancesR0,e
'L. For the dtm muonic molecular ion the deuterium
tritium d function gives such a probability for distances th
are approximately 200 times smaller (R0,m'L/mm). In fact,
the nuclear~d,t! fusion occurs when the distance between
deuterium and tritium nuclei is less thanRf'5310213 cm.
This explains a principal difference in computation of t
nuclear fusion probabilities for the DT1 and dtm ions. In-
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deed, in the last caseR0,m,Rf and for computing the nuclea
fusion probability one needs to know only the deuteriu
tritium d function and astrophysical factor for the~d,t! reac-
tion. For the DT1 ion we haveR0,e@Rf , and therefore, the
analogous expression for the nuclear fusion probability m
also include an additional penetration factor ('1025).

Finally, one finds that the~d,t! fusion probability for the
DT1 ion ~as well as for the DT molecule! is a very small
value ('10225210227 s21 per DT molecule! at normal
conditions. This means that the nuclear fusion in the D1

ions and DT molecules~at normal conditions! cannot be con-
sidered for actual thermonuclear applications. Note, ho
ever, that our method developed in this study can be mo
fied to evaluate the rate of bound-free transitions a
Compton scattering rate in the DT1 ion and other similar
one-electron adiabatic ions, e.g., (6LiD) 31. In turn, this sim-
plifies significantly the evaluation of analogous values
the highly compressed (r0>150 g cm23) mixtures of the
lithium-6, deuterium, tritium, and helium-4. In general, th
rates of bound-free and bound-bound transitions~along with
the bremsstrahlung rate and corresponding rates for inv
processes! are of paramount importance for solving of th
corresponding burn-up equations, i.e., to predict the ther
nuclear ignition at actual conditions~for more details see
e.g., Refs.@16,17#!.

The nuclear-nuclear cusps presented in Table II are
nificantly less accurate than other bound state proper
from Table II. It should be mentioned, that the actual co
putational accuracy for the nuclear-nuclear cusps andd func-
tions has never been determined in molecular calculations
fact, since Ref.@12# it was assumed that all compute
nuclear-nuclear cusps for an arbitrary molecule are appr
mately equal to the expected values given by Eq.~9!. More-
over, such an agreement can be improved, if the more a
rate wave functions are used. This also was never te
numerically for adiabatic systems. Our present results in
cate that all computed nuclear-nuclear cusps andd functions
in the DT1 and T2

1 ions have a very poor numerical acc
racy. Also, the presently computed nuclear-nuclear cusp
the T2

1 ion ~see Table II! has the same accuracy as in Re
@4#. In contrast with this, the electron-nucleus cusps andd
functions for an arbitrary adiabatic system can be determi
quite accurately~see Table II!. Note also, that for many
nonadiabatic~or nonmolecular! Coulomb three-body system
the cusp conditions have been tested to a very high accu
~see, e.g., Ref.@1# and references therein!.

Thus in this study we considered the ground bound sta
in the heavy adiabatic ions T2

1 and DT1. The total energies
of these states have been determined to a high accurac
using the recently developed multibox approach@1#. A large
number of bound state properties has also been compute
these two ions. For the nonsymmetric DT1 ion the presented
kinetic and geometrical properties have never been de
mined in earlier calculations. In contrast with the energ
and other bound state properties, the problems related to
nuclear-nuclear contact properties remain unsolved. P
ently, we cannot obtain such expectation values even
5-6
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proximately. For instance, the current deviation between
computed and expected tritium-tritium delta function in t
T2

1 ion can be evaluated as'1028. For the DT1 ion such a
deviation can also be evaluated as'1028. In conclusion, it
should be mentioned that the more accurate determinatio
al

04670
e

of

contact nuclear-nuclear properties must be a central prob
for future studies of the Coulomb three-body adiabatic s
tems.
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